Adjoint interpretations of sentential calculi

Studia Logica 41 (4):359 - 374 (1982)
Abstract
The aim of this paper is to give a general background and a uniform treatment of several notions of mutual interpretability. Sentential calculi are treated as preorders and logical invariants of adjoint situations, i.e. Galois connections are investigated. The class of all sentential calculi is treated as a quasiordered class.Some methods of the axiomatization of the M-counterparts of modal systems are based on particular adjoints. Also, invariants concerning adjoints for calculi with implication are pointed out. Finally, the notion of interpretability is generalized so that it may be applied to closure spaces as well.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #167,561 of 1,098,129 )

Recent downloads (6 months)

2 ( #172,576 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.