A general theory of structured consequence relations

Theoria 10 (2):49-78 (1995)
Abstract
There are several areas in logic where the monotonicity of the consequence relation fails to hold. Roughly these are the traditional non-monotonic systems arising in Artificial Intelligence (such as defeasible logics, circumscription, defaults, ete), numerical non-monotonic systems (probabilistic systems, fuzzy logics, belief functions), resource logics (also called substructural logics such as relevance logic, linear logic, Lambek calculus), and the logic of theory change (also called belief revision, see Alchourron, Gärdenfors, Makinson [2224]). We are seeking a common axiomatic and semantical approach to the notion of consequence whieh can be specialised to any of the above areas. This paper introduces the notions of structured consequence relation, shift operators and structural connectives, and shows an intrinsic connection between the above areas
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,374
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #165,478 of 1,096,840 )

Recent downloads (6 months)

3 ( #106,677 of 1,096,840 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.