Algorithmic proof methods and cut elimination for implicational logics part I: Modal implication

Studia Logica 61 (2):237-280 (1998)
Abstract
In this work we develop goal-directed deduction methods for the implicational fragment of several modal logics. We give sound and complete procedures for strict implication of K, T, K4, S4, K5, K45, KB, KTB, S5, G and for some intuitionistic variants. In order to achieve a uniform and concise presentation, we first develop our methods in the framework of Labelled Deductive Systems [Gabbay 96]. The proof systems we present are strongly analytical and satisfy a basic property of cut admissibility. We then show that for most of the systems under consideration the labelling mechanism can be avoided by choosing an appropriate way of structuring theories. One peculiar feature of our proof systems is the use of restart rules which allow to re-ask the original goal of a deduction. In case of K, K4, S4 and G, we can eliminate such a rule, without loosing completeness. In all the other cases, by dropping such a rule, we get an intuitionistic variant of each system. The present results are part of a larger project of a goal directed proof theory for non-classical logics; the purpose of this project is to show that most implicational logics stem from slight variations of a unique deduction method, and from different ways of structuring theories. Moreover, the proof systems we present follow the logic programming style of deduction and seem promising for proof search [Gabbay and Reyle 84, Miller et al. 91].
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

11 ( #138,806 of 1,102,930 )

Recent downloads (6 months)

8 ( #29,681 of 1,102,930 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.