Fibred semantics and the weaving of logics part 1: Modal and intuitionistic logics

Journal of Symbolic Logic 61 (4):1057-1120 (1996)
Abstract
This is Part 1 of a paper on fibred semantics and combination of logics. It aims to present a methodology for combining arbitrary logical systems L i , i ∈ I, to form a new system L I . The methodology `fibres' the semantics K i of L i into a semantics for L I , and `weaves' the proof theory (axiomatics) of L i into a proof system of L I . There are various ways of doing this, we distinguish by different names such as `fibring', `dovetailing' etc, yielding different systems, denoted by L F I , L D I etc. Once the logics are `weaved', further `interaction' axioms can be geometrically motivated and added, and then systematically studied. The methodology is general and is applied to modal and intuitionistic logics as well as to general algebraic logics. We obtain general results on bulk, in the sense that we develop standard combining techniques and refinements which can be applied to any family of initial logics to obtain further combined logics. The main results of this paper is a construction for combining arbitrary, (possibly not normal) modal or intermediate logics, each complete for a class of (not necessarily frame) Kripke models. We show transfer of recursive axiomatisability, decidability and finite model property. Some results on combining logics (normal modal extensions of K) have recently been introduced by Kracht and Wolter, Goranko and Passy and by Fine and Schurz as well as a multitude of special combined systems existing in the literature of the past 20-30 years. We hope our methodology will help organise the field systematically
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,273
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #173,266 of 1,096,329 )

Recent downloads (6 months)

2 ( #130,630 of 1,096,329 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.