Meme and variations: A computational model of cultural evolution

In [Book Chapter] (1995)
This paper describes a computational model of how ideas, or memes, evolve through the processes of variation, selection, and replication. Every iteration, each neural-network based agent in an artificial society has the opportunity to acquire a new meme, either through 1) INNOVATION, by mutating a previously-learned meme, or 2) IMITATION, by copying a meme performed by a neighbor. Imitation, mental simulation, and using past experience to bias mutation all increase the rate at which fitter memes evolve. Memes at epistatic loci converged more slowly than memes at over- or underdominant loci. The higher the ratio of innovation to imitation, the greater the meme diversity, and the higher the fitness of the fittest meme. Optimization is fastest for the society as a whole with an innovation to imitation ratio of 2:1, but diversity is comprimized.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #208,024 of 1,726,249 )

Recent downloads (6 months)

1 ( #354,177 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.