Deceptive updating and minimal information methods

Synthese 187 (1):147 - 178 (2012)
The technique of minimizing information (infomin) has been commonly employed as a general method for both choosing and updating a subjective probability function. We argue that, in a wide class of cases, the use of infomin methods fails to cohere with our standard conception of rational degrees of belief. We introduce the notion of a deceptive updating method and argue that non-deceptiveness is a necessary condition for rational coherence. Infomin has been criticized on the grounds that there are no higher order probabilities that 'support' it, but the appeal to higher order probabilities is a substantial assumption that some might reject. Our elementary arguments from deceptiveness do not rely on this assumption. While deceptiveness implies lack of higher order support, the converse does not, in general, hold, which indicates that deceptiveness is a more objectionable property. We offer a new proof of the claim that infomin updating of any strictly-positive prior with respect to conditional-probability constraints is deceptive. In the case of expected-value constraints, infomin updating of the uniform prior is deceptive for some random variables but not for others. We establish both a necessary condition and a sufficient condition (which extends the scope of the phenomenon beyond cases previously considered) for deceptiveness in this setting. Along the way, we clarify the relation which obtains between the strong notion of higher order support, in which the higher order probability is defined over the full space of first order probabilities, and the apparently weaker notion, in which it is defined over some smaller parameter space. We show that under certain natural assumptions, the two are equivalent. Finally, we offer an interpretation of Jaynes, according to which his own appeal to infomin methods avoids the incoherencies discussed in this paper
Keywords Updating probabilities  Minimal information  Higher order probabilities  Maximum entropy  Cross entropy Jaynes
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,570
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Claude Shannon (1948). A Mathematical Theory of Communication. Bell System Technical Journal 27:379–423.

View all 13 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

42 ( #105,719 of 1,938,441 )

Recent downloads (6 months)

2 ( #281,963 of 1,938,441 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.