Non-standard models in a broader perspective

Abstract
Non-standard models were introduced by Skolem, first for set theory, then for Peano arithmetic. In the former, Skolem found support for an anti-realist view of absolutely uncountable sets. But in the latter he saw evidence for the impossibility of capturing the intended interpretation by purely deductive methods. In the history of mathematics the concept of a nonstandard model is new. An analysis of some major innovations–the discovery of irrationals, the use of negative and complex numbers, the modern concept of function, and non-Euclidean geometry–reveals them as essentially different from the introduction of non-standard models. Yet, non-Euclidean geometry, which is discussed at some length, is relevant to the present concern; for it raises the issue of intended interpretation. The standard model of natural numbers is the best candidate for an intended interpretation that cannot be captured by a deductive system. Next, I suggest, is the concept of a wellordered set, and then, perhaps, the concept of a constructible set. One may have doubts about a realistic conception of the standard natural numbers, but such doubts cannot gain support from non-standard models. Attempts to utilize non-standard models for an anti-realist position in mathematics, which appeal to meaning-as-use, or to arguments of the kind proposed by Putnam, fail through irrelevance, or lead to incoherence. Robinson’s skepticism, on the other hand, is a coherent position, though one that gives up on providing a detailed philosophical account. The last section enumerates various uses of non-standard models.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    25 ( #58,703 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,661 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.