A note on generalized functional completeness in the realm of elementrary logic

We can think of functional completeness in systems of propositional logic as a form of expressive completeness: while every logical constant in such system expresses a truth-function of finitely many arguments, functional completeness garantees that every truth-function of finitely many arguments can be expressed with the constants in the system. From this point of view, a functionnaly complete system of propositionnal logic can thus be seen as one where no logical constant is missing. Can a similar question be formulated for quantified first-order logics ? How to make sense of the question whether, e.g., ordinary first-order logic is "functionaly" complete or have no logical constant missing ? In this note, we build on a suggestive proposal made by Bonnay(2006) and shows that it is equivalent to the criterion that a first-order logic L be functionaly complete if and only if every class of structures closed under L-elementary equivalence is L-elementary. Ordinary first-order logic is not complete in this sense. We raise the question whether any logic can be.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

22 ( #132,868 of 1,726,994 )

Recent downloads (6 months)

9 ( #74,822 of 1,726,994 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.