Algebraization, parametrized local deduction theorem and interpolation for substructural logics over FL

Studia Logica 83 (1-3):279 - 308 (2006)
Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation properties and explain how they imply the amalgamation property for certain varieties of residuated lattices.
Keywords Substructural logic  pointed residuated lattice  algebraic semantics  parametrized local deduction theorem  interpolation
Categories (categorize this paper)
DOI 10.2307/20016806
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 15 references / Add more references

Citations of this work BETA

View all 15 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

19 ( #147,771 of 1,726,249 )

Recent downloads (6 months)

2 ( #289,836 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.