Toward a topic-specific logicism? Russell's theory of geometry in the principles of mathematics

Philosophia Mathematica 17 (1):35-72 (2009)
Abstract
Russell's philosophy is rightly described as a programme of reduction of mathematics to logic. Now the theory of geometry developed in 1903 does not fit this picture well, since it is deeply rooted in the purely synthetic projective approach, which conflicts with all the endeavours to reduce geometry to analytical geometry. The first goal of this paper is to present an overview of this conception. The second aim is more far-reaching. The fact that such a theory of geometry was sustained by Russell compels us to question the meaning of logicism: how is it possible to reconcile Russell's global reductionist standpoint with his local defence of the specificities of geometry? * This paper was first presented at the conference ‘Qu'est ce que la géométrie aux époques modernes et contemporaines?’ (16–20 April 2007), organized by the Universität Köln and the Archives Poincaré. I would like to thank Philippe Nabonnand for having enlightened me about the issues relative to projective geometry. I would like also to thank Nicholas Griffin, Brice Halimi, Bernard Linsky, Marco Panza, Ivahn Smadja for their helpful discussions. Many thanks also to the two anonymous referees for their useful suggestions. CiteULike Connotea Del.icio.us What's this?
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    View all 6 references

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-02-07

    Total downloads

    31 ( #47,399 of 1,088,384 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.