Proof-theoretic modal PA-Completeness III: The syntactic proof

Studia Logica 63 (3):301-310 (1999)
This paper is the final part of the syntactic demonstration of the Arithmetical Completeness of the modal system G; in the preceding parts [9] and [10] the tools for the proof were defined, in particular the notion of syntactic countermodel. Our strategy is: PA-completeness of G as a search for interpretations which force the distance between G and a GL-LIN-theorem to zero. If the GL-LIN-theorem S is not a G-theorem, we construct a formula H expressing the non G-provability of S, so that ⊢GL-LIN ∼ H and so that a canonical proof T of ∼ H in GL-LIN is a syntactic countermodel for S with respect to G, which has the height θ(T) equal to the distance d(S, G) of S from G. Then we define the interpretation ξ of S which represents the proof-tree T in PA. By induction on θ(T), we prove that ⊢PA Sξ and d(S, G) > 0 imply the inconsistency of PA.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.