Modal logic and model theory

Studia Logica 43 (3):203 - 216 (1984)
We propose a first order modal logic, theQS4E-logic, obtained by adding to the well-known first order modal logicQS4 arigidity axiom schemas:A → □A, whereA denotes a basic formula. In this logic, thepossibility entails the possibility of extending a given classical first order model. This allows us to express some important concepts of classical model theory, such as existential completeness and the state of being infinitely generic, that are not expressibile in classical first order logic. Since they can be expressed in -logic, we are also induced to compare the expressive powers ofQS4E and . Some questions concerning the power of rigidity axiom are also examined.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,720
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
C. C. Chang & H. J. Keisler (1976). Model Theory. Journal of Symbolic Logic 41 (3):697-699.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

21 ( #196,669 of 1,937,395 )

Recent downloads (6 months)

1 ( #456,797 of 1,937,395 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.