The construction of transfinite equivalence algorithms

Abstract
Context: Consistency of mathematical constructions in numerical analysis and the application of computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To show that a computer in general and a numerical analysis in particular can add its own peculiarities to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a prediction in numerical economics could mean. Method: An algebraic simple model system is subjected to a deeper structure of underlying variables. With an algorithm simulating the steps in taking a limit of second order difference quotients the error terms are studied at the background of their algebraic expression. Results: With the algorithm that was applied to a simple quadratic polynomial system we found unstably amplified round-off errors. The possibility of numerical chaos is already known but not in such a simple system as used in our paper. The amplification of the errors implies that it is not possible with computer means to constructively show that the algebra and numerical analysis will ‘on the long run’ converge to each other and the error term will vanish. The algebraic vanishing of the error term cannot be demonstrated with the use of the computer because the round-off errors are amplified. In philosophical terms, the amplification of the round-off error is equivalent to the continuum hypothesis. This means that the requirement of (numerical) construction of mathematical objects is no safeguard against inference-only conclusions of qualities of (numerical) mathematical objects. Unstably amplified round-off errors are a same type of problem as the ordering in size of transfinite cardinal numbers. The difference is that the former problem is created within the requirements of constructive mathematics. This can be seen as the reward for working numerically constructive.
Keywords Numerical mathematics  Constructioundations of mathematicsve f
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive Han Geurdes, The construction of transfinite equivalence algorithms
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Gabriele Gramelsberger (2011). What Do Numerical (Climate) Models Really Represent? Studies in History and Philosophy of Science 42 (2):296-302.
Eric Mandelbaum (2013). Numerical Architecture. Topics in Cognitive Science 5 (1):367-386.
Analytics

Monthly downloads

Added to index

2012-01-12

Total downloads

54 ( #32,152 of 1,101,637 )

Recent downloads (6 months)

5 ( #68,119 of 1,101,637 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.