Relational and partial variable sets and basic predicate logic

Journal of Symbolic Logic 61 (3):843-872 (1996)
Abstract
In this paper we study the logic of relational and partial variable sets, seen as a generalization of set-valued presheaves, allowing transition functions to be arbitrary relations or arbitrary partial functions. We find that such a logic is the usual intuitionistic and co-intuitionistic first order logic without Beck and Frobenius conditions relative to quantifiers along arbitrary terms. The important case of partial variable sets is axiomatizable by means of the substitutivity schema for equality. Furthermore, completeness, incompleteness and independence results are obtained for different kinds of Beck and Frobenius conditions
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,330
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #195,517 of 1,096,584 )

Recent downloads (6 months)

1 ( #258,571 of 1,096,584 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.