Numbers, reference and Russellian propositions

Grazer Philosophische Studien 72 (1):95-110 (2006)
Stewart Shapiro and John Myhill tried to reproduce some features of the intuitionistic mathematics within certain formal intensional theories of classical mathematics. Basically they introduced a knowledge operator and restricted the ways of referring to numbers and to finite hereditary sets. The restrictions are very interesting, both because they allow us to keep substitutivity of identicals notwithstanding the presence of an epistemic operator and, especially, because such restrictions allow us to see, by contrast, which ways of reference are not compatible with the simultaneous maintenance of substitutivity of identicals and the classical notions of truth and knowledge. In this paper the difference between the restricted and the unrestricted kind of reference is put in relation with Russell's ideas on naming and it is argued that the latter as well is compatible with a certain Russellian conception of the understanding of sentences. Then it is discussed whether and how numbers could be conceived as objects of acquaintance. Finally a general question about the notion of logical form is raised.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 20,860
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

16 ( #228,446 of 1,906,979 )

Recent downloads (6 months)

1 ( #468,378 of 1,906,979 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.