An orthodox statistical resolution of the paradox of confirmation

Philosophy of Science 37 (3):354-362 (1970)
Abstract
Several authors, e.g. Patrick Suppes and I. J. Good, have recently argued that the paradox of confirmation can be resolved within the developing subjective Bayesian account of inductive reasoning. The aim of this paper is to show that the paradox can also be resolved by the rival orthodox account of hypothesis testing currently employed by most statisticians and scientists. The key to the orthodox statistical resolution is the rejection of a generalized version of Hempel's instantiation condition, namely, the condition that a PQ is inductively relevant to the hypothesis $(x)(Px\supset Qx)$ even in the absence of all further information. Though their reasons differ, it turns out that Bayesian and orthodox statisticians agree that this condition lies at the heart of the paradox
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

11 ( #138,532 of 1,102,742 )

Recent downloads (6 months)

1 ( #296,833 of 1,102,742 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.