An intensional type theory: Motivation and cut-elimination

Journal of Symbolic Logic 66 (1):383-400 (2001)
Abstract
By the theory TT is meant the higher order predicate logic with the following recursively defined types: (1) 1 is the type of individuals and [] is the type of the truth values: (2) [τ l ,..., τ n ] is the type of the predicates with arguments of the types τ l ,..., τ n . The theory ITT described in this paper is an intensional version of TT. The types of ITT are the same as the types of TT, but the membership of the type 1 of individuals in ITT is an extension of the membership in TT. The extension consists of allowing any higher order term, in which only variables of type 1 have a free occurrence, to be a term of type 1. This feature of ITT is motivated by a nominalist interpretation of higher order predication. In ITT both well-founded and non-well-founded recursive predicates can be defined as abstraction terms from which all the properties of the predicates can be derived without the use of non-logical axioms. The elementary syntax, semantics, and proof theory for ITT are defined. A semantic consistency proof for ITT is provided and the completeness proof of Takahashi and Prawitz for a version of TT without cut is adapted for ITT: a consequence is the redundancy of cut
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,941
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #203,263 of 1,100,758 )

Recent downloads (6 months)

3 ( #115,463 of 1,100,758 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.