Causality, propensity, and bayesian networks

Synthese 132 (1-2):63 - 88 (2002)
Abstract
This paper investigates the relations between causality and propensity. Aparticular version of the propensity theory of probability is introduced, and it is argued that propensities in this sense are not causes. Some conclusions regarding propensities can, however, be inferred from causal statements, but these hold only under restrictive conditions which prevent cause being defined in terms of propensity. The notion of a Bayesian propensity network is introduced, and the relations between such networks and causal networks is investigated. It is argued that causal networks cannot be identified with Bayesian propensity networks, but that causal networks can be a valuable heuristic guide for the construction of Bayesian propensity networks.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,085
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

33 ( #52,678 of 1,101,599 )

Recent downloads (6 months)

5 ( #59,635 of 1,101,599 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.