Uniqueness of simultaneity

Abstract
We consider the problem of uniqueness of certain simultaneity structures in flat spacetime. Absolute simultaneity is specifiled to be a non-trivial equivalence relation which is invariant under the automorphism group Aut of spacetime. Aut is taken to be the identity-component of either the inhomogeneous Galilei group or the inhomogeneous Lorentz group. Uniqueness of standard simultaneity in the first, and absence of any absolute simultaneity in the second case are demonstrated and related to certain group theoretic properties. Relative simultaneity with respect to an additional structure X on spacetime is specified to be a non-trivial equivalence relation which is invariant under the subgroup in Aut that stabilises X. Uniqueness of standard Einstein simultaneity is proven in the Lorentzian case when X is an inertial frame. We end by discussing the relation to previous work of others.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    10 ( #120,424 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.