Groups and algebras of binary relations

Bulletin of Symbolic Logic 8 (1):38-64 (2002)
In 1941, Tarski published an abstract, finitely axiomatized version of the theory of binary relations, called the theory of relation algebras, He asked whether every model of his abstract theory could be represented as a concrete algebra of binary relations. He and Jonsson obtained some initial, positive results for special classes of abstract relation algebras. But Lyndon showed, in 1950, that in general the answer to Tarski's question is negative. Monk proved later that the answer remains negative even if one adjoins finitely many new axioms to Tarski's system. In this paper we describe a far-reaching generalization of the positive results of Jonsson and Tarski, as well as of some later, related results of Maddux. We construct a class of concrete models of Tarski's axioms-called coset relation algebras-that are very close in spirit to algebras of binary relations, but are built using systems of groups and cosets instead of elements of a base set. The models include all algebras of binary relations, and many non-representable relation algebras as well, We prove that every atomic relation algebra satisfying a certain measurability condition-a condition generalizing the conditions imposed by Jonsson and Tarski-is essentially isomorphic to a coset relation algebra. The theorem raises the possibility of providing a positive solution to Tarski's problem by using coset relation algebras instead of the standard algebras of binary relations
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2178/bsl/1182353852
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,774
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

6 ( #344,709 of 1,727,294 )

Recent downloads (6 months)

1 ( #354,177 of 1,727,294 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.