What does the free will theorem actually prove?

Abstract
Conway and Kochen have presented a “free will theorem” [4, 6] which they claim shows that “if indeed we humans have free will, then [so do] elementary particles.” In a more precise fashion, they claim it shows that for certain quantum experiments in which the experimenters can choose between several options, no deterministic or stochastic model can account for the observed outcomes without violating a condition “MIN” motivated by relativistic symmetry. We point out that for stochastic models this conclusion is not correct, while for deterministic models it is not new. In the way the free will theorem is formulated and proved, it only concerns deterministic models. But Conway and Kochen have argued [4, 5, 6, 7] that “randomness can’t help,” meaning that stochastic models are excluded as well if we insist on the conditions “SPIN”, “TWIN”, and “MIN”. We point out a mistake in their argument. Namely, the theorem is of the form deterministic model with SPIN & TWIN & MIN ⇒ contradiction , (1) and in order to derive the further claim, which is of the form stochastic model with SPIN & TWIN & MIN ⇒ contradiction , (2) Conway and Kochen propose a method for converting any stochastic model into a deterministic one [4].
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,398
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-06-12

Total downloads

53 ( #28,738 of 1,096,960 )

Recent downloads (6 months)

1 ( #273,368 of 1,096,960 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.