Phase transitions of iterated Higman-style well-partial-orderings

Archive for Mathematical Logic 51 (1-2):127-161 (2012)
  Copy   BIBTEX

Abstract

We elaborate Weiermann-style phase transitions for well-partial-orderings (wpo) determined by iterated finite sequences under Higman-Friedman style embedding with Gordeev’s symmetric gap condition. For every d-times iterated wpo \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}\right)}$$\end{document} in question, d > 1, we fix a natural extension of Peano Arithmetic, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T \supseteq \sf{PA}}$$\end{document}, that proves the corresponding second-order sentence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{WPO}\left({\rm S}{\textsc{eq}}^{d}, \trianglelefteq _{d}\right) }$$\end{document}. Having this we consider the following parametrized first-order slow well-partial-ordering sentence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}, r\right):}$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \forall K > 0 \right) \left( \exists M > 0\right) \left( \forall x_{0},\ldots,x_{M}\in {\rm S}\text{\textsc{eq}}^{d}\right)$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \left( \forall i\leq M\right) \left( \left| x_{i}\right| 1}$$\end{document} then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d},r \right) }$$\end{document} is not provable in T.Moreover, by the well-known proof theoretic equivalences we can just as well replace T by PA or ACA0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta _{1}^{1}\sf{CA}}$$\end{document}, if d = 2 and d = 3, respectively.In the limit case d → ∞ we replaceEFA-provably computable reals r by EFA-provably computable functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f: \mathbb{N} \rightarrow \mathbb{R}_{+}}$$\end{document} and prove analogous theorems. (In the sequel we denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}_{+}}$$\end{document} the set of EFA-provably computable positive reals). In the basic case T = PA we strengthen the basic phase transition result by adding the following static threshold clause\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1\right)}$$\end{document} is still provable in T = PA (actually in EFA). Furthermore we prove the following dynamic threshold clauses which, loosely speaking are obtained by replacing the static threshold t by slowly growing functions 1α given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1_{\alpha }\left( i\right)\,{:=}\,1+\frac{1}{H_{\alpha }^{-1}\left(i\right) }, H_{\alpha}}$$\end{document} being the familiar fast growing Hardy function and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{\alpha }^{-1}\left( i\right)\,{:=}\,\rm min \left\{ j \mid H_{\alpha } \left ( j\right) \geq i \right\}}$$\end{document} the corresponding slowly growing inversion. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha < \varepsilon _{0}}$$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1_{\alpha}\right)}$$\end{document} is provable in T = PA. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf{SWP}\left( {\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2},1_{\varepsilon _{0}}\right)}$$\end{document} is not provable in T = PA. We conjecture that this pattern is characteristic for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T\supseteq \sf{PA}}$$\end{document} under consideration and their proof-theoretical ordinals o (T ), instead of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon _{0}}$$\end{document}.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-10-27

Downloads
35 (#443,848)

6 months
9 (#298,039)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
Dickson’s lemma and weak Ramsey theory.Yasuhiko Omata & Florian Pelupessy - 2019 - Archive for Mathematical Logic 58 (3-4):413-425.

Add more citations

References found in this work

A mathematical incompleteness in Peano arithmetic.Jeff Paris & Leo Harrington - 1977 - In Jon Barwise & H. Jerome Keisler (eds.), Handbook of Mathematical Logic. North-Holland Pub. Co.. pp. 90--1133.
An application of graphical enumeration to PA.Andreas Weiermann - 2003 - Journal of Symbolic Logic 68 (1):5-16.
Phase transitions for Gödel incompleteness.Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 157 (2-3):281-296.

View all 11 references / Add more references