New aspects of the probabilistic evaluation of hypotheses and experience

Abstract
The probabilistic corroboration of two or more hypotheses or series of observations may be performed additively or multiplicatively . For additive corroboration (e.g. by Laplace's rule of succession), stochastic independence is needed. Inferences, based on overwhelming numbers of observations without unexplained counterinstances permit hyperinduction , whereby extremely high probabilities, bordering on certainty for all practical purposes may be achieved. For multiplicative corroboration, the error probabilities (1 - Pr) of two (or more) hypotheses are multiplied. The probabilities, obtained by reconverting the product, are valid for both of the hypotheses and indicate the gain by corroboration.. This method is mathematically correct, no probabilities > 1 can result (as in some conventional methods) and high probabilities with fewer observations may be obtained, however, semantical independence is a prerequisite. The combined method consists of (1) the additive computation of the error probabilities (1 - Pr) of two or more single hypotheses, whereby arbitrariness is avoided or at least reduced and (2) the multiplicative procedure . The high reliability of Empirical Counterfactual Statements is explained by the possibility of multiplicative corroboration of "all-no" statements due to their strict semantical independence.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

11 ( #137,206 of 1,101,778 )

Recent downloads (6 months)

5 ( #59,646 of 1,101,778 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.