A representation theorem for voting with logical consequences

Economics and Philosophy 22 (2):181-190 (2006)
Abstract
This paper concerns voting with logical consequences, which means that anybody voting for an alternative x should vote for the logical consequences of x as well. Similarly, the social choice set is also supposed to be closed under logical consequences. The central result of the paper is that, given a set of fairly natural conditions, the only social choice functions that satisfy social logical closure are oligarchic (where a subset of the voters are decisive for the social choice). The set of conditions needed for the proof include a version of Independence of Irrelevant Alternatives that also plays a central role in Arrow's impossibility theorem. (Published Online July 11 2006) Footnotes1 Much of this article was written while the author was a fellow at the Swedish Collegium for Advanced Study in the Social Sciences (SCASSS) in Uppsala. I want to thank the Collegium for providing me with excellent working conditions. Wlodek Rabinowicz and other fellows gave me valuable comments at a seminar at SCASSS when an early version of the paper was presented. I also want to thank Luc Bovens, Franz Dietrich, Christian List and an anonymous referee for their excellent comments on a later version. The final version was prepared during a stay at Oxford University for which I am grateful to the British Academy
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

19 ( #85,201 of 1,096,628 )

Recent downloads (6 months)

2 ( #158,594 of 1,096,628 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.