On the decision problem for two-variable first-order logic

Bulletin of Symbolic Logic 3 (1):53-69 (1997)
We identify the computational complexity of the satisfiability problem for FO 2 , the fragment of first-order logic consisting of all relational first-order sentences with at most two distinct variables. Although this fragment was shown to be decidable a long time ago, the computational complexity of its decision problem has not been pinpointed so far. In 1975 Mortimer proved that FO 2 has the finite-model property, which means that if an FO 2 -sentence is satisfiable, then it has a finite model. Moreover, Mortimer showed that every satisfiable FO 2 -sentence has a model whose size is at most doubly exponential in the size of the sentence. In this paper, we improve Mortimer's bound by one exponential and show that every satisfiable FO 2 -sentence has a model whose size is at most exponential in the size of the sentence. As a consequence, we establish that the satisfiability problem for FO 2 is NEXPTIME-complete
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/421196
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,707
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

View all 9 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #205,927 of 1,726,249 )

Recent downloads (6 months)

6 ( #118,705 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.