Dynamic simulation of mitochondrial respiration and oxidative phosphorylation: Comparison with experimental results

Acta Biotheoretica (forthcoming)
Abstract
Hypoxia hampers ATP production and threatens cell survival. Since cellular energetics tightly controls cell responses and fate, ATP levels and dynamics are of utmost importance. An integrated mathematical model of ATP synthesis by the mitochondrial oxidative phosphorylation/electron transfer chain system has been recently published (Beard, PLoS Comput Biol 1(4):e36, 2005). This model was validated under static conditions. To evaluate its performance under dynamical situations, we implemented and simulated it (Simulink®, The Mathworks). Inner membrane potential (ΔΨ) and [NADH] (feeding the electron transfer chain) were used as indicators of mitochondrial function. Root mean squared error (rmse) was used to compare simulations and experiments (isolated cardiac mitochondria, Bose et al. J Biol Chem 278(40):39155–39165, 2003). Steady-state experimental data were reproduced within 2–6%. Model dynamics were evaluated under: (i) baseline, (ii) activation of NADH production, (iii) addition of ADP, (iv) addition of inorganic phosphate, (v) oxygen exhaustion. In all phases, except the last one, ΔΨ and [NADH] as well as oxygen consumption, were reproduced (within 10, 7 and 12%, respectively). Under anoxia, simulated ΔΨ markedly depolarized (no change in experiments). In conclusion, the model reproduces dynamic data as long as oxygen is present. Anticipated improvement by the inclusion of ATP consumption and explicit Krebs cycle are under evaluation.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,986
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

3 ( #292,614 of 1,100,975 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.