Decision problem for separated distributive lattices

Journal of Symbolic Logic 48 (1):193-196 (1983)
It is well known that for all recursively enumerable sets X 1 , X 2 there are disjoint recursively enumerable sets Y 1 , Y 2 such that $Y_1 \subseteq X_1, Y_2 \subseteq X_2$ and Y 1 ∪ Y 2 = X 1 ∪ X 2 . Alistair Lachlan called distributive lattices satisfying this property separated. He proved that the first-order theory of finite separated distributive lattices is decidable. We prove here that the first-order theory of all separated distributive lattices is undecidable
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,312 of 1,089,047 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.