Infinite numbers are large finite numbers

Abstract
In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers are too large to be counted by any finite number, but too small to be counted by any infinite number – there is no number of natural numbers.
Keywords Cantor  paradox  infinite
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive Jeremy Gwiazda, Infinite numbers are large finite numbers
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Jeremy Gwiazda (2012). On Infinite Number and Distance. Constructivist Foundations 7 (2):126-130.
Charles Sayward (2002). A Conversation About Numbers and Knowledge. American Philosophical Quarterly 39 (3):275-287.
Zvonimir Šikić (1996). What Are Numbers? International Studies in the Philosophy of Science 10 (2):159 – 171.
Zvonimir Šikić (1996). What Are Numbers? International Studies in the Philosophy of Science 10 (2):159-171.
Analytics

Monthly downloads

Added to index

2011-07-12

Total downloads

221 ( #1,957 of 1,096,272 )

Recent downloads (6 months)

15 ( #8,745 of 1,096,272 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.