When can statistical theories be causally closed?

Foundations of Physics 34 (9):1285-1303 (2004)
The notion of common cause closedness of a classical, Kolmogorovian probability space with respect to a causal independence relation between the random events is defined, and propositions are presented that characterize common cause closedness for specific probability spaces. It is proved in particular that no probability space with a finite number of random events can contain common causes of all the correlations it predicts; however, it is demonstrated that probability spaces even with a finite number of random events can be common cause closed with respect to a causal independence relation that is stronger than logical independence. Furthermore it is shown that infinite, atomless probability spaces are always common cause closed in the strongest possible sense. Open problems concerning common cause closedness are formulated and the results are interpreted from the perspective of Reichenbach's Common Cause Principle.
Keywords Reichenbach's Common Cause Principle  causality  stochastic causality  causal closedness
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    17 ( #82,065 of 1,089,057 )

    Recent downloads (6 months)

    11 ( #10,074 of 1,089,057 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.