Strong semantic systematicity from Hebbian connectionist learning

Minds and Machines 7 (1):1-55 (1997)
Abstract
  Fodor's and Pylyshyn's stand on systematicity in thought and language has been debated and criticized. Van Gelder and Niklasson, among others, have argued that Fodor and Pylyshyn offer no precise definition of systematicity. However, our concern here is with a learning based formulation of that concept. In particular, Hadley has proposed that a network exhibits strong semantic systematicity when, as a result of training, it can assign appropriate meaning representations to novel sentences (both simple and embedded) which contain words in syntactic positions they did not occupy during training. The experience of researchers indicates that strong systematicity in any form is difficult to achieve in connectionist systems.Herein we describe a network which displays strong semantic systematicity in response to Hebbian, connectionist training. During training, two-thirds of all nouns are presented only in a single syntactic position (either as grammatical subject or object). Yet, during testing, the network correctly interprets thousands of sentences containing those nouns in novel positions. In addition, the network generalizes to novel levels of embedding. Successful training requires a, corpus of about 1000 sentences, and network training is quite rapid. The architecture and learning algorithms are purely connectionist, but classical insights are discernible in one respect, viz, that complex semantic representations spatially contain their semantic constituents. However, in other important respects, the architecture is distinctly non-classical
Keywords Connectionism  Language  Learning  Science  Semantics
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,404
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

26 ( #68,265 of 1,103,002 )

Recent downloads (6 months)

5 ( #62,017 of 1,103,002 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.