Mean-variance vs. full-scale optimization: Broad evidence for the UK

Abstract
Portfolio choice by full-scale optimization applies the empirical return distribution to a parameterized utility function, and the maximum is found through numerical optimization. Using a portfolio choice setting of three UK equity indices we identify several utility functions featuring loss aversion and prospect theory, under which full-scale optimization is a substantially better approach than the mean-variance approach. As the equity indices have return distributions with small deviations from normality, the findings indicate much broader usefulness of full-scale optimization than has earlier been shown. The results hold in and out of sample, and the performance improvements are given in terms of utility as well as certainty equivalents.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,350
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

3 ( #283,452 of 1,096,714 )

Recent downloads (6 months)

2 ( #162,598 of 1,096,714 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.