Vexing Expectations

Mind 113 (450):237 - 249 (2004)
Abstract
We introduce a St. Petersburg-like game, which we call the 'Pasadena game', in which we toss a coin until it lands heads for the first time. Your pay-offs grow without bound, and alternate in sign (rewards alternate with penalties). The expectation of the game is a conditionally convergent series. As such, its terms can be rearranged to yield any sum whatsoever, including positive infinity and negative infinity. Thus, we can apparently make the game seem as desirable or undesirable as we want, simply by reordering the pay-off table, yet the game remains unchanged throughout. Formally speaking, the expectation does not exist; but we contend that this presents a serious problem for decision theory, since it goes silent when we want it to speak. We argue that the Pasadena game is more paradoxical than the St. Petersburg game in several respects. We give a brief review of the relevant mathematics of infinite series. We then consider and rebut a number of replies to our paradox: that there is a privileged ordering to the expectation series; that decision theory should be restricted to finite state spaces; and that it should be restricted to bounded utility functions. We conclude that the paradox remains live
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    37 ( #39,215 of 1,088,404 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,404 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.