Self-improving AI: an Analysis [Book Review]

Minds and Machines 17 (3):249-259 (2007)
Abstract
Self-improvement was one of the aspects of AI proposed for study in the 1956 Dartmouth conference. Turing proposed a “child machine” which could be taught in the human manner to attain adult human-level intelligence. In latter days, the contention that an AI system could be built to learn and improve itself indefinitely has acquired the label of the bootstrap fallacy. Attempts in AI to implement such a system have met with consistent failure for half a century. Technological optimists, however, have maintained that a such system is possible, producing, if implemented, a feedback loop that would lead to a rapid exponential increase in intelligence. We examine the arguments for both positions and draw some conclusions.
Keywords Artificial intelligence   Autogeny   Bootstrap fallacy   Complexity barrier   Learning   Self-improving
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    33 ( #44,417 of 1,088,873 )

    Recent downloads (6 months)

    1 ( #69,661 of 1,088,873 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.