The variety of lattice effect algebras generated by MV-algebras and the horizontal sum of two 3-element chains

Studia Logica 89 (1):19 - 35 (2008)
It has been recently shown [4] that the lattice effect algebras can be treated as a subvariety of the variety of so-called basic algebras. The open problem whether all subdirectly irreducible distributive lattice effect algebras are just subdirectly irreducible MV-chains and the horizontal sum of two 3-element chains is in the paper transferred into a more tractable one. We prove that modulo distributive lattice effect algebras, the variety generated by MV-algebras and is definable by three simple identities and the problem now is to check if these identities are satisfied by all distributive lattice effect algebras or not.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,443 of 1,088,370 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.