The variety of lattice effect algebras generated by MV-algebras and the horizontal sum of two 3-element chains

Studia Logica 89 (1):19 - 35 (2008)
It has been recently shown [4] that the lattice effect algebras can be treated as a subvariety of the variety of so-called basic algebras. The open problem whether all subdirectly irreducible distributive lattice effect algebras are just subdirectly irreducible MV-chains and the horizontal sum of two 3-element chains is in the paper transferred into a more tractable one. We prove that modulo distributive lattice effect algebras, the variety generated by MV-algebras and is definable by three simple identities and the problem now is to check if these identities are satisfied by all distributive lattice effect algebras or not.
Keywords Philosophy   Computational Linguistics   Mathematical Logic and Foundations   Logic
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,660
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

27 ( #157,182 of 2,048,160 )

Recent downloads (6 months)

4 ( #163,235 of 2,048,160 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.