Personal Publications Media Views Ulimate Computing

Abstract
Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function "self-collapse"(objective reduction: OR -Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular characteristics of microtubules suitable for quantum effects include their crystal-like lattice structure, hollow inner core, organization of cell function and capacity for information processing. We envisage that conformational states of microtubule subunits (tubulins) are coupled to internal quantum events, and cooperatively interact (compute) with other tubulins. We further assume that macroscopic coherent superposition of quantum-coupled tubulin conformational states occurs throughout significant brain volumes and provides the global binding essential to consciousness. We equate the emergence of the microtubule quantum coherence with pre-conscious processing which grows (for up to 500 milliseconds) until the mass-energy difference among the separated states of tubulins reaches a threshold related to quantum gravity. According to the arguments for OR put forth in Penrose (1994), superpositioned states each have their own space-time geometries. When the degree of coherent massenergy difference leads to sufficient separation of space-time geometry, the system must choose and decay (reduce, collapse) to a single universe state. In this way, a transient superposition of slightly differing space-time geometries persists until an abrupt quantum classical reduction occurs. Unlike the random, "subjective reduction"(SR, or R) of standard quantum theory caused by observation or environmental entanglement, the OR we propose in microtubules is a self-collapse and it results in particular patterns of microtubule-tubulin conformational states that regulate neuronal activities including synaptic functions. Possibilities and probabilities for post-reduction tubulin states are influenced by factors including attachments of microtubule-associated proteins (MAPs) acting as "nodes"which tune and "orchestrate"the quantum oscillations..
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,101
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Stuart R. Hameroff (2001). Consciousness, the Brain, and Space-Time Geometry. Annals of the New York Academy of Sciences 929:74-104.
Rick Grush & P. Churchland (1995). Gaps in Penrose's Toiling. In Thomas Metzinger (ed.), Conscious Experience. Ferdinand Schoningh. 10-29.
Maurice A. De Gosson (2013). Quantum Blobs. Foundations of Physics 43 (4):440-457.
Shan Gao (2013). A Quantum Physical Argument for Panpsychism. Journal of Consciousness Studies 20 (1-2):1 - 2.
Analytics

Monthly downloads

Added to index

2010-12-22

Total downloads

9 ( #165,803 of 1,102,138 )

Recent downloads (6 months)

1 ( #306,622 of 1,102,138 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.