Duality for lattice-ordered algebras and for normal algebraizable logics

Studia Logica 58 (3):403-450 (1997)
Abstract
Part I of this paper is developed in the tradition of Stone-type dualities, where we present a new topological representation for general lattices (influenced by and abstracting over both Goldblatt's [17] and Urquhart's [46]), identifying them as the lattices of stable compact-opens of their dual Stone spaces (stability refering to a closure operator on subsets). The representation is functorial and is extended to a full duality.In part II, we consider lattice-ordered algebras (lattices with additional operators), extending the Jónsson and Tarski representation results [30] for Boolean algebras with Operators. Our work can be seen as developing, and indeed completing, Dunn's project of gaggle theory [13, 14]. We consider general lattices (rather than Boolean algebras), with a broad class of operators, which we dubb normal, and which includes the Jónsson-Tarski additive operators. Representation of l-algebras is extended to full duality.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    9 ( #128,813 of 1,088,378 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,378 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.