From geometry to phenomenology

Synthese 162 (2):225 - 233 (2008)
Abstract
Richard Tieszen [Tieszen, R. (2005). Philosophy and Phenomenological Research, LXX(1), 153–173.] has argued that the group-theoretical approach to modern geometry can be seen as a realization of Edmund Husserl’s view of eidetic intuition. In support of Tieszen’s claim, the present article discusses Husserl’s approach to geometry in 1886–1902. Husserl’s first detailed discussion of the concept of group and invariants under transformations takes place in his notes on Hilbert’s Memoir Ueber die Grundlagen der Geometrie that Hilbert wrote during the winter 1901–1902. Husserl’s interest in the Memoir is a continuation of his long-standing concern about analytic geometry and in particular Riemann and Helmholtz’s approach to geometry. Husserl favored a non-metrical approach to geometry; thus the topological nature of Hilbert’s Memoir must have been intriguing to him. The task of phenomenology is to describe the givenness of this logos, hence Husserl needed to develop the notion of eidetic intuition.
Keywords Husserl  Geometry  Eidetic intuition  Group theory  Foundations of geometry  Hilbert
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    View all 11 references

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    32 ( #45,905 of 1,088,818 )

    Recent downloads (6 months)

    2 ( #42,743 of 1,088,818 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.