Models in science

In Ed Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford (2006)
Abstract
Models are of central importance in many scientific contexts. The centrality of models such as the billiard ball model of a gas, the Bohr model of the atom, the MIT bag model of the nucleon, the Gaussian-chain model of a polymer, the Lorenz model of the atmosphere, the Lotka-Volterra model of predator-prey interaction, the double helix model of DNA, agent-based and evolutionary models in the social sciences, or general equilibrium models of markets in their respective domains are cases in point. Scientists spend a great deal of time building, testing, comparing and revising models, and much journal space is dedicated to introducing, applying and interpreting these valuable tools. In short, models are one of the principal instruments of modern science. Philosophers are acknowledging the importance of models with increasing attention and are probing the assorted roles that models play in scientific practice. The result has been an incredible proliferation of model-types in the philosophical literature. Probing models, phenomenological models, computational models, developmental models, explanatory models, impoverished models, testing models, idealized models, theoretical models, scale models, heuristic models, caricature models, didactic models, fantasy models, toy models, imaginary models, mathematical models, substitute models, iconic models, formal models, analogue models and instrumental models are but some of the notions that are used to categorize models. While at first glance this abundance is overwhelming, it can quickly be brought under control by recognizing that these notions pertain to different problems that arise in connection with models. For example, models raise questions in semantics (what is the representational function that models perform?), ontology (what kind of things are models?), epistemology (how do we learn with models?), and, of course, in philosophy of science (how do models relate to theory?; what are the implications of a model based approach to science for the debates over scientific realism, reductionism, explanation and laws of nature?).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Julian Reiss (2012). The Explanation Paradox. Journal of Economic Methodology 19 (1):43-62.
Similar books and articles
Analytics

Monthly downloads

Added to index

2010-07-25

Total downloads

22 ( #75,143 of 1,096,632 )

Recent downloads (6 months)

2 ( #162,598 of 1,096,632 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.