Zeeman-göbel topologies

Zeeman argued that the Euclidean (i. e. manifold) topology of Minkowski space-time should be replaced by a strictly finer topology that was to have a closer connection with the indefinite metric. This proposal was extended in 1976 by Rudiger Göbel and Hawking, King and McCarthy to the space-times of General Relativity. It is the purpose of this paper to argue that these suggestions for replacement misrepresent the significance of the manifold topology and overstate the necessity for a finer topology. The motivation behind such arguments is a realist view of space-time topology as against (what can be construed to be) the instrumentalist position underlying some of the suggestions for replacement.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    20 ( #71,683 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.