A Liar Paradox

Thought 1 (1):36-40 (2012)
Abstract
The purpose of this note is to present a strong form of the liar paradox. It is strong because the logical resources needed to generate the paradox are weak, in each of two senses. First, few expressive resources required: conjunction, negation, and identity. In particular, this form of the liar does not need to make any use of the conditional. Second, few inferential resources are required. These are: (i) conjunction introduction; (ii) substitution of identicals; and (iii) the inference: From ¬(p ∧ p), infer ¬ p. It is, interestingly enough, also essential to the argument that the ‘strong’ form of the diagonal lemma be used: the one that delivers a term λ such that we can prove: λ = ¬ T(⌈λ⌉); rather than just a sentence Λ for which we can prove: Λ ≡ ¬T(⌈Λ⌉). The truth-theoretic principles used to generate the paradox are these: ¬(S ∧ T(⌈¬S⌉); and ¬(¬S ∧ ¬T(⌈¬S⌉). These are classically equivalent to the two directions of the T-scheme, but they are intuitively weaker. The lesson I would like to draw is: There can be no consistent solution to the Liar paradox that does not involve abandoning truth-theoretic principles that should be every bit as dear to our hearts as the T-scheme. So we shall have to learn to live with the Liar, one way or another.
Keywords liar  truth
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive Richard Heck, A Liar Paradox
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 7 references

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

112 ( #9,362 of 1,102,977 )

Recent downloads (6 months)

23 ( #6,997 of 1,102,977 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.