Mathematical pluralism: The case of smooth infinitesimal analysis [Book Review]

Journal of Philosophical Logic 35 (6):621 - 651 (2006)
Abstract
A remarkable development in twentieth-century mathematics is smooth infinitesimal analysis ('SIA'), introducing nilsquare and nilpotent infinitesimals, recovering the bulk of scientifically applicable classical analysis ('CA') without resort to the method of limits. Formally, however, unlike Robinsonian 'nonstandard analysis', SIA conflicts with CA, deriving, e.g., 'not every quantity is either = 0 or not = 0.' Internally, consistency is maintained by using intuitionistic logic (without the law of excluded middle). This paper examines problems of interpretation resulting from this 'change of logic', arguing that standard arguments based on 'smoothness' requirements are question-begging. Instead, it is suggested that recent philosophical work on the logic of vagueness is relevant, especially in the context of a Hilbertian structuralist view of mathematical axioms (as implicitly defining structures of interest). The relevance of both topos models for SIA and modal-structuralism as appled to this theory is clarified, sustaining this remarkable instance of mathematical pluralism
Keywords infinitesimal analysis  synthetic differential geometry  intuitionistic logic  Kock-Lawrence Axiom  nilsquare infinitesimal  pluralism  structuralism  modal-structuralism  toposes  vagueness
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    26 ( #56,514 of 1,088,398 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,398 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.