Quantum logic and the projection postulate

Philosophy of Science 48 (3):469-486 (1981)
Abstract
This paper explores the status of the von Neumann-Luders state transition rule (the "projection postulate") within "real-logic" quantum logic. The entire discussion proceeds from a reading of the Luders rule according to which, although idealized in applying only to "minimally disturbing" measurements, it nevertheless makes empirical claims and is not a purely mathematical theorem. An argument (due to Friedman and Putnam) is examined to the effect that QL has an explanatory advantage over Copenhagen and other interpretations which relativize truth-value assignments to experimental arrangements. Two versions of QL, the lattice-theoretic (LT) and partial-Boolean-algebra (PBA), are considered. It turns out that the projection postulate is intimately connected with the choice of conditional connective for QL. The effect of the projection postulate is obtained with the Sasaki conditional. However, this choice is found to require extra assumptions, on both the LT and PBA versions, which are either just as ad hoc as the projection postulate itself or indefensible from within the real-logic QL framework
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    15 ( #90,339 of 1,088,810 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.