Quantum mechanical unbounded operators and constructive mathematics – a rejoinder to bridges

Journal of Philosophical Logic 26 (2):121-127 (1997)
Abstract
As argued in Hellman (1993), the theorem of Pour-El and Richards (1983) can be seen by the classicist as limiting constructivist efforts to recover the mathematics for quantum mechanics. Although Bridges (1995) may be right that the constructivist would work with a different definition of 'closed operator', this does not affect my point that neither the classical unbounded operators standardly recognized in quantum mechanics nor their restrictions to constructive arguments are recognizable as objects by the constructivist. Constructive substitutes that may still be possible necessarily involve additional 'incompleteness' in the mathematical representation of quantum phenomena. Concerning a second line of reasoning in Hellman (1993), its import is that constructivist practice is consistent with a 'liberal' stance but not with a 'radical', verificationist philosophical position. Whether such a position is actually espoused by certain leading constructivists, they are invited to clarify
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    10 ( #120,414 of 1,089,047 )

    Recent downloads (6 months)

    4 ( #24,247 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.