Stochastic Einstein-locality and the bell theorems

Synthese 53 (3):461 - 504 (1982)
Standard proofs of generalized Bell theorems, aiming to restrict stochastic, local hidden-variable theories for quantum correlation phenomena, employ as a locality condition the requirement of conditional stochastic independence. The connection between this and the no-superluminary-action requirement of the special theory of relativity has been a topic of controversy. In this paper, we introduce an alternative locality condition for stochastic theories, framed in terms of the models of such a theory (§2). It is a natural generalization of a light-cone determination condition that is essentially equivalent to mathematical conditions that have been used to derive Bell inequalities in the deterministic case. Further, it is roughly equivalent to a condition proposed by Bell that, in one investigation, needed to be supplemented with a much stronger assumption in order to yield an inequality violated by some quantum mechanical predictions. It is shown here that this reflects a very general situation: from the proposed locality condition, even adding the strict anticorrelation condition and the auxiliary hypotheses needed to derive experimentally useful (and theoretically telling) inequalities, no Bell-type inequality is derivable. (These independence claims are the burden of §4.) A certain limitation on the scope of the proposed stochastic locality condition is exposed (§5), but it is found to be rather minor. The conclusion is thus supported that conditional stochastic independence, however reasonable on other grounds, is essentially stronger than what is required by the special theory.Our results stand in apparent contradiction with a class of derivations purporting to obtain generalized Bell inequalities from locality alone. It is shown in Appendix (B) that such proofs do not achieve their goal. This fits with our conclusion that generalized Bell theorems are not straightforward generalizations of theorems restricting deterministic hidden-variable theories, and that, in fact, such generalizations do not exist. This leaves open the possibility that a satisfactory, non-deterministic account of the quantum correlation phenomena can be given within the framework of the special theory.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF00486162
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,209
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 9 references / Add more references

Citations of this work BETA
John Earman & Giovanni Valente (2014). Relativistic Causality in Algebraic Quantum Field Theory. International Studies in the Philosophy of Science 28 (1):1-48.
Joe Henson (2005). Comparing Causality Principles. Studies in History and Philosophy of Science Part B 36 (3):519-543.

View all 12 citations / Add more citations

Similar books and articles
Jeremy Butterfield (2007). Stochastic Einstein Locality Revisited. British Journal for the Philosophy of Science 58 (4):805 - 867.
Federico Laudisa (1995). Einstein, Bell, and Nonseparable Realism. British Journal for the Philosophy of Science 46 (3):309-329.
Jeffrey Bub & Vandana Shiva (1978). Non-Local Hidden Variable Theories and Bell's Inequality. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1978:45-53.
Jeremy Butterfield (1992). Bell's Theorem: What It Takes. British Journal for the Philosophy of Science 43 (1):41-83.
Geoffrey Hellman (1982). Stochastic Locality and the Bell Theorems. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1982:601-615.

Monthly downloads

Added to index


Total downloads

47 ( #101,324 of 1,941,071 )

Recent downloads (6 months)

15 ( #56,734 of 1,941,071 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.