Syntax-directed discovery in mathematics

Erkenntnis 43 (2):241 - 259 (1995)
Abstract
It is shown how mathematical discoveries such as De Moivre's theorem can result from patterns among the symbols of existing formulae and that significant mathematical analogies are often syntactic rather than semantic, for the good reason that mathematical proofs are always syntactic, in the sense of employing only formal operations on symbols. This radically extends the Lakatos approach to mathematical discovery by allowing proof-directed concepts to generate new theorems from scratch instead of just as evolutionary modifications to some existing theorem. The emphasis upon syntax and proof permits discoveries to go beyond the limits of any prevailing semantics. It also helps explain the shortcomings of inductive AI systems of mathematics learning such as Lenat's AM, in which proof has played no part in the formation of concepts and conjectures.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    3 ( #224,136 of 1,089,057 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.