Internal laws of probability, generalized likelihoods and Lewis' infinitesimal chances–a response to Adam Elga

Abstract
The rejection of an infinitesimal solution to the zero-fit problem by A. Elga ([2004]) does not seem to appreciate the opportunities provided by the use of internal finitely-additive probability measures. Indeed, internal laws of probability can be used to find a satisfactory infinitesimal answer to many zero-fit problems, not only to the one suggested by Elga, but also to the Markov chain (that is, discrete and memory-less) models of reality. Moreover, the generalization of likelihoods that Elga has in mind is not as hopeless as it appears to be in his article. In fact, for many practically important examples, through the use of likelihoods one can succeed in circumventing the zero-fit problem. 1 The Zero-fit Problem on Infinite State Spaces 2 Elga's Critique of the Infinitesimal Approach to the Zero-fit Problem 3 Two Examples for Infinitesimal Solutions to the Zero-fit Problem 4 Mathematical Modelling in Nonstandard Universes? 5 Are Nonstandard Models Unnatural? 6 Likelihoods and Densities A Internal Probability Measures and the Loeb Measure Construction B The (Countable) Coin Tossing Sequence Revisited C Solution to the Zero-fit Problem for a Finite-state Model without Memory D An Additional Note on ‘Integrating over Densities’ E Well-defined Continuous Versions of Density Functions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    István Aranyosi (2011). A New Argument for Mind-Brain Identity. British Journal for the Philosophy of Science 62 (3):489-517.
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    4 ( #198,664 of 1,089,062 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.