Continuum hypothesis as a model-theoretical problem

Abstract
Jaakko Hintikka 1. How to Study Set Theory The continuum hypothesis (CH) is crucial in the core area of set theory, viz. in the theory of the hierarchies of infinite cardinal and infinite ordinal numbers. It is crucial in that it would, if true, help to relate the two hierarchies to each other. It says that the second infinite cardinal number, which is known to be the cardinality of the first uncountable ordinal, equals the cardinality 2 o of the continuum. (Here o is the smallest infinite cardinal.).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,068
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-02-11

Total downloads

37 ( #50,267 of 1,101,856 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.