A reduction rule for Peirce formula

Studia Logica 56 (3):419 - 426 (1996)
Abstract
A reduction rule is introduced as a transformation of proof figures in implicational classical logic. Proof figures are represented as typed terms in a -calculus with a new constant P (()). It is shown that all terms with the same type are equivalent with respect to -reduction augmented by this P-reduction rule. Hence all the proofs of the same implicational formula are equivalent. It is also shown that strong normalization fails for P-reduction. Weak normalization is shown for P-reduction with another reduction rule which simplifies of (( ) ) into an atomic type.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,361
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #258,330 of 1,102,697 )

Recent downloads (6 months)

1 ( #296,698 of 1,102,697 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.