Nonstandard combinatorics

Studia Logica 47 (3):221 - 232 (1988)
Ramsey type theorems are theorems of the form: if certain sets are partitioned at least one of the parts has some particular property. In its finite form, Ramsey's theory will ask how big the partitioned set should be to assure this fact. Proofs of such theorems usually require a process of multiple choice, so that this apparently pure combinatoric field is rich in proofs that use ideal guides in making the choices. Typically they may be ultrafilters or points in the compactification of the given set. It is, therefore, not surprising that nonstandard elements are much more natural guides in some of the proofs and in the general abstract treatment.In Section 1 we start off with some very natural examples of Ramsey type exercises that illustrate our idea. In Section 2 we give a nonstandard proof of the infinite Ramsey theorem. Section 3 tries to do the same for Hindman's theorem, and points out, where nonstandard analysis must use some hard standard facts to make the proof go through.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF00370553
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

17 ( #160,237 of 1,727,288 )

Recent downloads (6 months)

3 ( #231,316 of 1,727,288 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.