Provability with finitely many variables

Bulletin of Symbolic Logic 8 (3):348-379 (2002)
Abstract
For every finite n ≥ 4 there is a logically valid sentence φ n with the following properties: φ n contains only 3 variables (each of which occurs many times); φ n contains exactly one nonlogical binary relation symbol (no function symbols, no constants, and no equality symbol): φ n has a proof in first-order logic with equality that contains exactly n variables, but no proof containing only n - 1 variables. This result was first proved using the machinery of algebraic logic developed in several research monographs and papers. Here we replicate the result and its proof entirely within the realm of (elementary) first-order binary predicate logic with equality. We need the usual syntax, axioms, and rules of inference to show that φ n has a proof with only n variables. To show that φ n has no proof with only n - 1 variables we use alternative semantics in place of the usual, standard, set-theoretical semantics of first-order logic
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,768
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #168,674 of 1,099,017 )

Recent downloads (6 months)

6 ( #43,697 of 1,099,017 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.